# Generative visual manipulation on the natural image manifold

指導教授: 莊仁輝研究助理: 何智輝

Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman and Alexei A. Efros. "Generative Visual Manipulation on the Natural Image Manifold", in European Conference on Computer Vision (ECCV). 2016.

2017/03/14

#### Outline

- Introduction
- Generative adversarial neural network (GAN)
- Learning natural image manifold
- Approach
  - a) Projecting an real image onto approximated manifold
  - b) Manipulating the latent vector
  - c) Gradient descent update
  - d) Edit transfer

### Introduction

- The system is an editing tool that allows realistic manipulation of photos in real-time.
- It is a data driven approach to edit image, including
  - changing the shape and color
  - transforming one image to another
  - generating a new image from scratch
- Application: online shopping scenario, image manipulation

ublications News Careers Programs About the Labs

Generative Visual Manipulation on the Natural Image Manifold

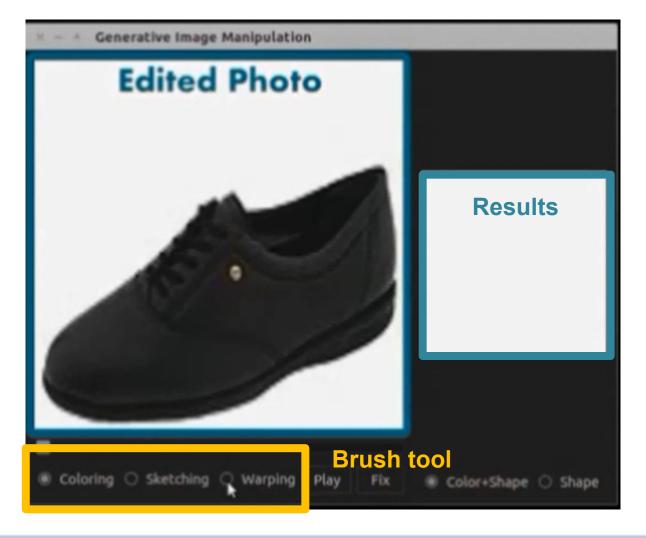


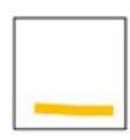
Interactive GAN

Realistic image manipulation is challenging because it requires modifying the image appearance in a user-controlled way, while preserving the realism of the result. Unless the user has considerable artistic skill, it is easy to "fall off" the manifold of natural images while editing. In this paper, we propose to learn the natural image manifold

Adobe

### Introduction





Coloring

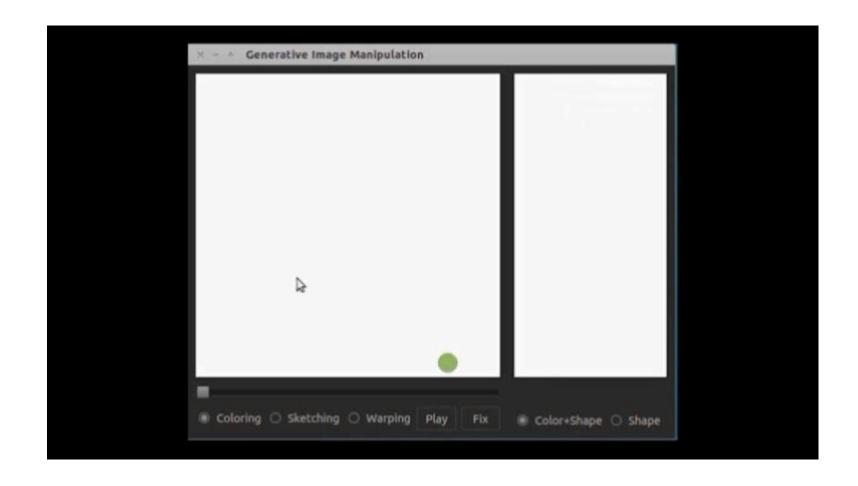


Sketching



Warping

### Introduction

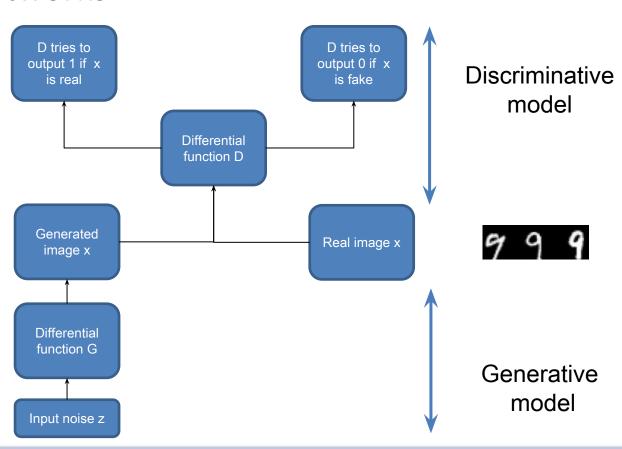


### **GAN**

- Train lots of images belongs to the same class on GAN
- A GAN model consists of two networks
  - Generative model (G)
  - Discriminative model (D)



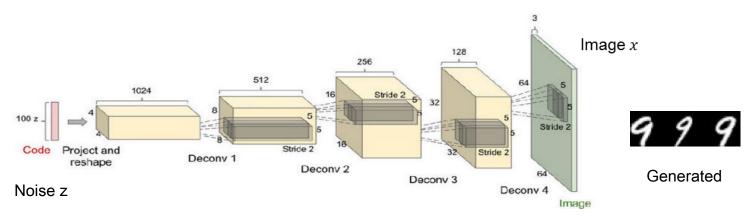
- Z denotes a d-dimensional latent space
- z is a random vector, where  $z \in \mathbb{Z}$



### **GAN**

- Generative model (G):
  - 1. Goal: captures the real data distribution and produces a fake image that looks real
  - 2. Input: a random vector z
  - 3. Output : a generated image G(z)
  - 4. Objective:  $\min\{\log(1 D(G(z)))\}$

|                    | D thinks G(z) is real | D thinks G(z) is fake |
|--------------------|-----------------------|-----------------------|
| Objective<br>value |                       |                       |

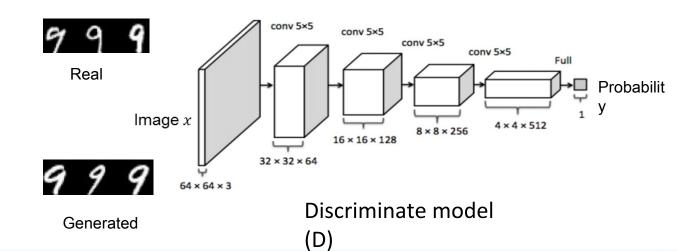


Generative model (G)

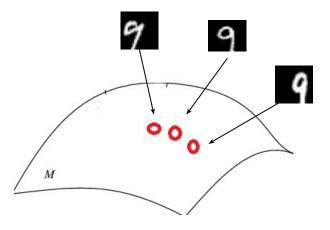
### **GAN**

- Discriminative model (D)
  - 1. Goal: distinguishes between a real image  $x^R$  or a fake image G(z)
  - 2. Input: a real image  $x^R$  or a fake image G(z)
  - 3. Output: a probability whether the image is real or fake
  - 4. Objective:  $\max\{\log(D(x^R)) + \log(1 D(G(z)))\}$

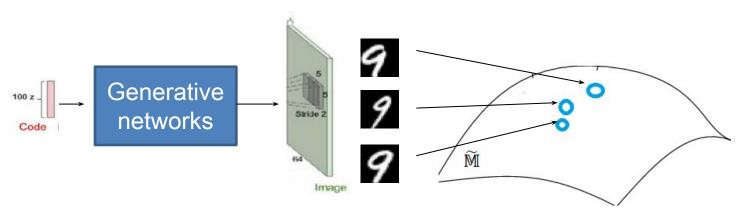
|                    | D thinks G(z) is real and x is fake | D thinks G(z) is fake and x is real |
|--------------------|-------------------------------------|-------------------------------------|
| Objective<br>value |                                     |                                     |



- Obtain a generative network G and a discriminative network D
- Assume all natural images lie on low dimension real image manifold  $\mathbb{M}$  with distance function  $\mathcal{S}(x_1, x_2)$ , where  $x_1, x_2 \in \mathbb{M}$
- Define approximated image manifild  $\widetilde{\mathbb{M}} = \{G(z) | z \in \mathbb{Z}\}$



Real image manifold M

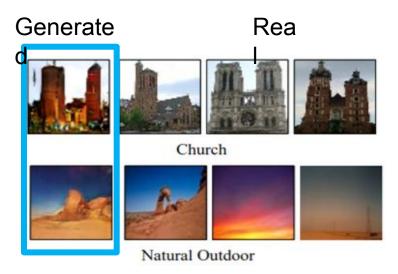


Approximated image manifild  $\widetilde{\mathbb{M}}$ 

- View GAN as a manifold approximation, because GAN produces high quality samples.
- A well-trained GAN should not memorize the training data.

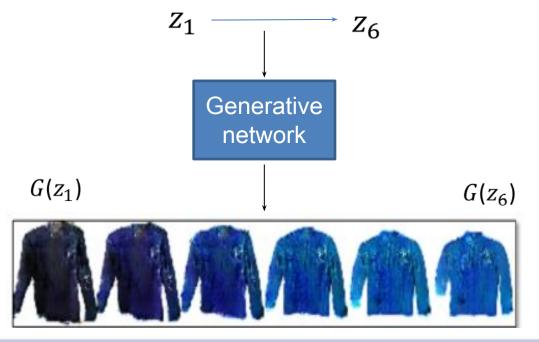


(a) Randomly generated samples from a GAN, trained on shirts dataset.



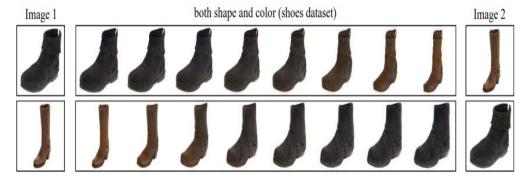
(b) The difference between generated image and real images shows that GAN does not memorize the real image

- f S View GAN as a manifold approximation, because the Euclidean distance in the  $\Bbb Z$  corresponds to perceptual similarity
- Therefore, we approximate  $S(G(z_1),G(z_2)) \approx ||z_1-z_2||^2$



Fix  $z_1$  and  $z_6$  and interpolate  $z_2$  to  $z_5$  in between. The generated images show perceptual similarity.





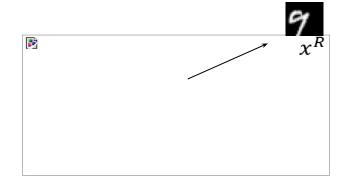
# Approach

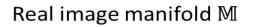
Real image manifold  ${\mathbb M}$ (a) original photo (e) different degree of image manipulation Project **Edit Transfer** (c) Editing UI Approximated image manifild  $\widetilde{\mathbb{M}}$ (d) smooth transition between the original and edited projection (b) projection on manifold

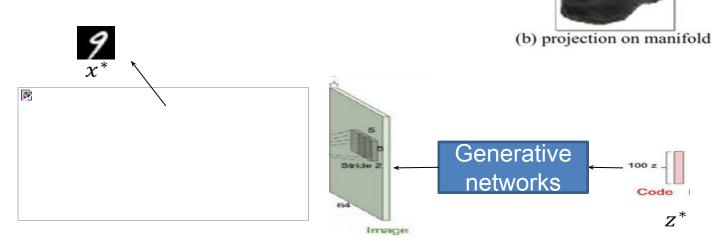
- A real photo  $x^R$  is projected to approximated manifold  $\widetilde{\mathbb{M}}$
- Find a generated image  $x^* \in \widetilde{\mathbb{M}}$  close to  $x^R$

• 
$$x^* = arg \min_{x \in \widetilde{\mathbb{M}}} \mathcal{L}(x, x^R) \rightarrow z^* = arg \min_{z \in \mathbb{Z}} \mathcal{L}(G(z), x^R)$$

• L is a distance metric





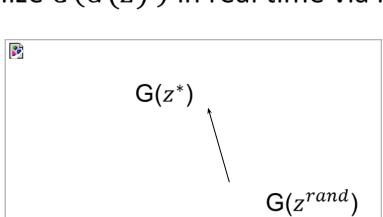


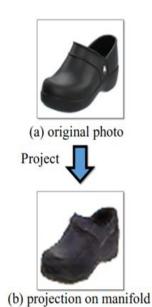
Approximated image manifild  $\widetilde{\mathbb{M}}$ 

(a) original photo

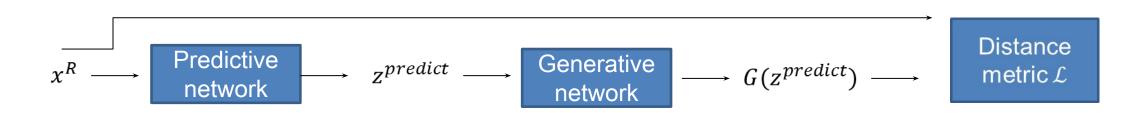
Project

- $\mathcal{L}$  is a distance metric, defined as  $\mathcal{L}(x_1, x_2) = ||\mathcal{C}(x_1) \mathcal{C}(x_2)||^2$
- C is a feature extractor, which is the weighted combination
  of raw pixels and conv4 features from AlexNet trained on ImageNet
- $\bullet \ z^* = arg \min_{z \in \mathbb{Z}} \mathcal{L}(G(z), x^R) \xrightarrow{} z^* = arg \min_{z \in \mathbb{Z}} \|C(G(z)) C(x^R)\|^2$
- Too difficult to optimize C(G(z)) in real time via random initialization of z

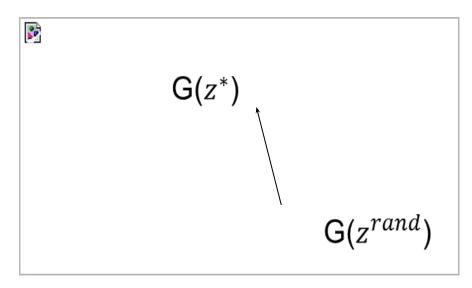




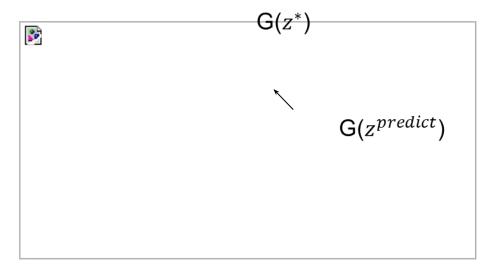
- Instead of random initialization, predict the z
- Train a feed forward neural network P and predict z from a  $x^R$ .
- $\theta_p^* = arg\min_{\theta_p} \sum_n \mathcal{L}(G(P(x_n^R, \theta_p)), x^R)$ , where  $x_n^R$  denotes the n-the image in the dataset
- Fix G throughout the training
- The network architecture of P is equivalent to D



• The system optimizes  $z^* = arg \min_{z \in \mathbb{Z}} \|C(G(z)) - C(x^R)\|^2$  starting from  $z^{predict}$ 



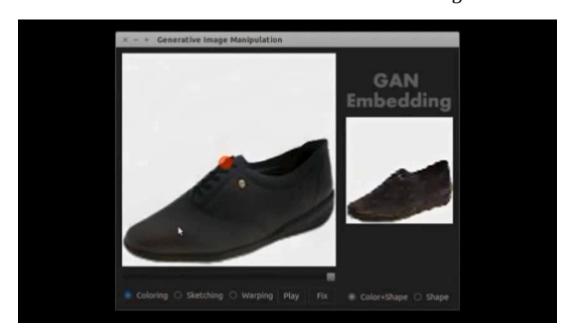
starting from  $z^{rand}$ 



starting from  $z^{predict}$ 

### Manipulating the latent vector

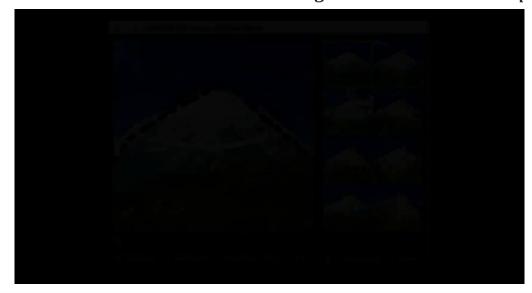
- After the previous step, a real image  $x_0^R$  is projected onto  $\widetilde{\mathbb{M}}$  as  $x_0 = G(z_0)$
- Update  $x_0$  by matching the user intention and stay on the manifold close to  $x_0$
- An edit operation is formulated as a constraint  $f_g(x) = v_g$ 
  - $\triangleright$  If g=color, we constrain pixel p to the selected color  $v_q$





### Manipulating the latent vector

- After the previous step, a real image  $x_0^R$  is projected onto  $\widetilde{\mathbb{M}}$  as  $x_0 = G(z_0)$
- Update  $x_0$  by matching the user intention and stay on the manifold close to  $x_0$
- An edit operation is formulated as a constraint  $f_g(x) = v_g$ 
  - ightharpoonup If g=color, we constrain pixel p to the selected color  $v_g$
  - $\triangleright$  If g=sketch, we constrain pixel p close to  $v_g = HOG(stroke)_p$





### Manipulating the latent vector

- After the previous step, a real image  $x_0^R$  is projected onto  $\widetilde{\mathbb{M}}$  as  $x_0 = G(z_0)$
- Update  $x_0$  by matching the user intention and stay on the manifold close to  $x_0$
- An edit operation is formulated as a constraint  $f_g(x) = v_g$ 
  - ightharpoonup If g=color, we constrain pixel p to the selected color  $v_g$
  - ightharpoonup If g=sketch, we constrain pixel p close to  $v_g=HOG(stroke)_p$
- Goal  $x^* = arg\min_{x \in \mathbb{M}} \left\{ \sum_g \left\| f_g(x) v_g \right\|^2 + \lambda_s \mathcal{S}(x, x_0) \right\}$





• Solve  $z^* = arg\min_{z \in \mathbb{Z}} \left\{ \sum_g \left\| f_g \big( G(z) \big) - v_g \right\|^2 + \lambda_s \|z - z_0\|^2 \right\}$  using gradient descent

User constraint  $\emph{v}_{\emph{g}}$  at different update step



Update images according to user's edit



 $z_0$ 

 $z_1$ 

- f aOnce the system obtain the final result  $\,G(z_1)$ , the user can see the interpolation sequence between  $z_0$  and  $z_1$
- $G\left(\left(1-\frac{t}{N}\right)z_0+\frac{t}{N}z_1\right)$  is the interpolation sequence

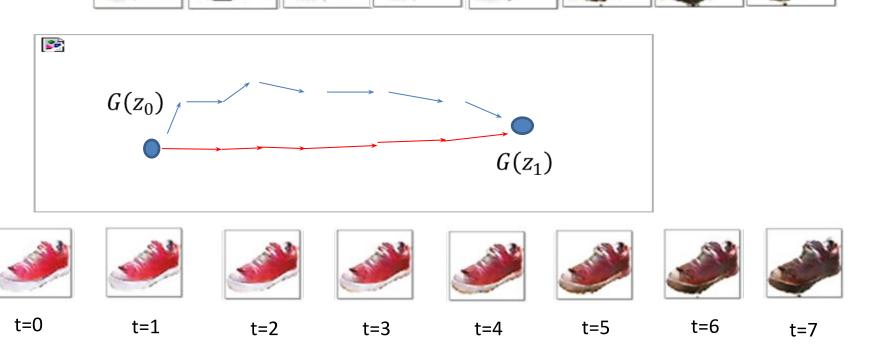


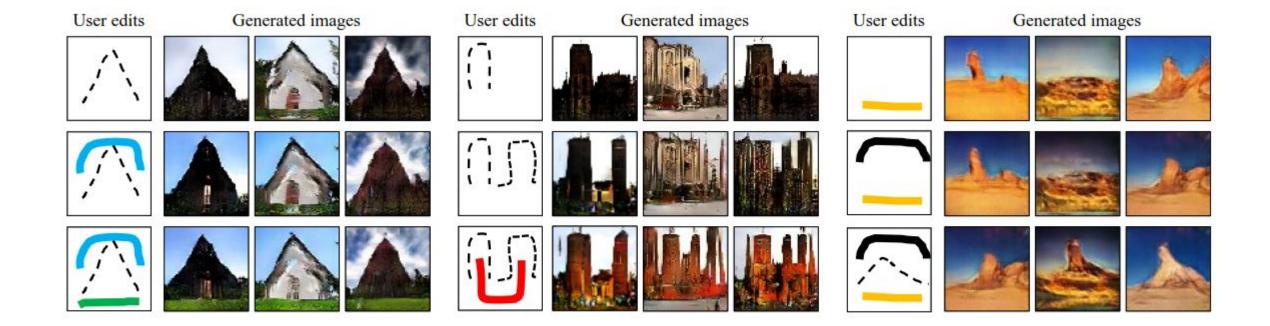
Result of N = 7

User constraint  $\emph{v}_\emph{g}$  at different update step



Update images according to user's edit





- Given  $G(z_0)$ ,  $G(z_1)$  and interpolation results, the system will project them back to M
- A straightforward way  $x_1^R = x_0^R + (G(z_1) G(z_0))$
- Due to the misalignment, the straightforward way does not produce good result
- Use the motion and color flow method

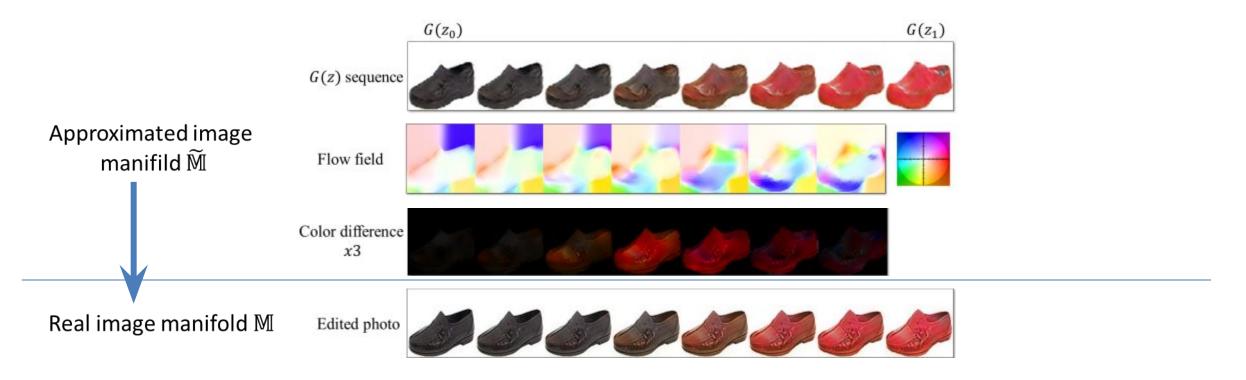
Use the motion and color flow method

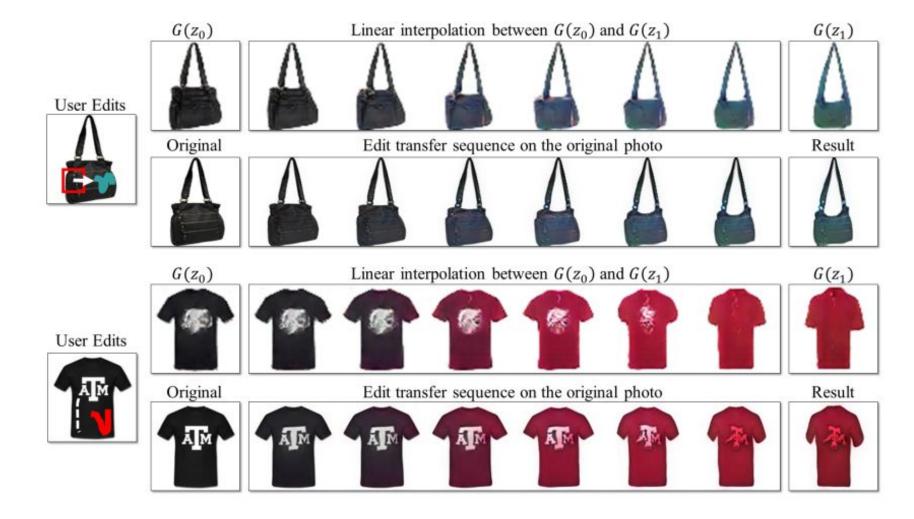
$$\iint \underbrace{\|I(x,y,t) - A \cdot I(x+u,y+v,t+1)\|^2}_{\text{data term}} + \underbrace{\sigma_s(\|\nabla u\|^2 + \|\nabla v\|^2)}_{\text{spatial reg}} + \underbrace{\sigma_c\|\nabla A\|^2}_{\text{color reg}} dx dy$$

- I(x, y, t) is the RGB value of pixel (x, y) in the generated image  $G\left(\left(1 \frac{t}{N}\right)z_0 + \frac{t}{N}z_1\right)$
- (u, v) is the flow vector w.r.t the change of t and A is a 3x4 color affine transformation matrix



- The system estimates the color and shape changes between nearby frames.
- Apply those changes to the original photo and produce a transition sequence of images.





# Thank you